Back to Search Start Over

Stochastic Finite Volume Method for Uncertainty Quantification of Transient Flow in Gas Pipeline Networks

Authors :
Tokareva, Svetlana
Zlotnik, Anatoly
Gyrya, Vitaliy
Publication Year :
2022

Abstract

We develop a weakly intrusive framework to simulate the propagation of uncertainty in solutions of generic hyperbolic partial differential equation systems on graph-connected domains with nodal coupling and boundary conditions. The method is based on the Stochastic Finite Volume (SFV) approach, and can be applied for uncertainty quantification (UQ) of the dynamical state of fluid flow over actuated transport networks. The numerical scheme has specific advantages for modeling intertemporal uncertainty in time-varying boundary parameters, which cannot be characterized by strict upper and lower (interval) bounds. We describe the scheme for a single pipe, and then formulate the controlled junction Riemann problem (JRP) that enables the extension to general network structures. We demonstrate the method's capabilities and performance characteristics using a standard benchmark test network.

Subjects

Subjects :
Mathematics - Numerical Analysis

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2204.06431
Document Type :
Working Paper