Back to Search Start Over

First cryogenic tests on BINGO innovations

Authors :
Armatol, A.
Augier, C.
Baudin, D.
Benato, G.
Billard, J.
Carniti, P.
Chapellier, M.
Charrier, A.
Danevich, F.
De Combarieu, M.
De Jesus, M.
Dumoulin, L.
Ferri, F.
Gascon, J.
Giuliani, A.
Gomez, H.
Gotti, C.
Gras, Ph.
Gros, M.
Juillard, A.
Khalife, H.
Kobychev, V. V.
Lefevre, M.
Loaiza, P.
Marnieros, S.
Mas, Ph.
Mazzucato, E.
Millot, J. F.
Nones, C.
Pessina, G.
Poda, D. V.
Scarpaci, J. A.
Tellier, O.
Tretyak, V. I.
Zarytskyy, M. M.
Zolotarova, A.
Publication Year :
2022

Abstract

Neutrinoless double-beta decay ($0\nu2\beta$) is a hypothetical rare nuclear transition. Its observation would provide an important insight about the nature of neutrinos (Dirac or Majorana particle) demonstrating that the lepton number is not conserved. BINGO (Bi-Isotope $0\nu2\beta$ Next Generation Observatory) aims to set the technological grounds for future bolometric $0\nu2\beta$ experiments. It is based on a dual heat-light readout, i.e. a main scintillating absorber embedding the double-beta decay isotope accompanied by a cryogenic light detector. BINGO will study two of the most promising isotopes: $^{100}$Mo embedded in Li$_2$MoO$_4$ (LMO) crystals and $^{130}$Te embedded in TeO$_2$. BINGO technology will reduce dramatically the background in the region of interest, thus boosting the discovery sensitivity of $0\nu2\beta$. The proposed solutions will have a high impact on next-generation bolometric tonne-scale experiments, like CUPID. In this contribution, we present the results obtained during the first tests performed in the framework of BINGO R&D.<br />Comment: 4 pages, 2 figures. Contribution to the proceedings of 32nd Rencontres de Blois, Blois, France, 17-22 October 2021

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2204.14161
Document Type :
Working Paper