Back to Search Start Over

Improving the Convergence Rates for the Kinetic Fokker-Planck Equation by Optimal Control

Authors :
Breiten, Tobias
Kunisch, Karl
Publication Year :
2022

Abstract

The long time behavior and detailed convergence analysis of Langevin equations has received increased attention over the last years. Difficulties arise from a lack of coercivity, usually termed hypocoercivity, of the underlying kinetic Fokker-Planck operator which is a consequence of the partially deterministic nature of a second order stochastic differential equation. In this manuscript, the effect of controlling the confinement potential without altering the original invariant measure is investigated. This leads to an abstract bilinear control system with an unbounded but infinite-time admissible control operator which, by means of an artificial diffusion approach, is shown to possess a unique solution. The compactness of the underlying semigroup is further used to define an infinite-horizon optimal control problem on an appropriately reduced state space. Under smallness assumptions on the initial data, feasibility of and existence of a solution to the optimal control problem are discussed. Numerical results based on a local approximation based on a shifted Riccati equation illustrate the theoretical findings.<br />Comment: 32 pages, 4 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2205.01369
Document Type :
Working Paper