Back to Search Start Over

Accounting for stellar activity signals in radial-velocity data by using Change Point Detection techniques

Authors :
Simola, U.
Bonfanti, A.
Dumusque, X.
Cisewski-Kehe, J.
Kaski, S.
Corander, J.
Source :
A&A 664, A127 (2022)
Publication Year :
2022

Abstract

Active regions on the photosphere of a star have been the major obstacle for detecting Earth-like exoplanets using the radial velocity (RV) method. A commonly employed solution for addressing stellar activity is to assume a linear relationship between the RV observations and the activity indicators along the entire time series, and then remove the estimated contribution of activity from the variation in RV data (overall correction method). However, since active regions evolve on the photosphere over time, correlations between the RV observations and the activity indicators will correspondingly be anisotropic. We present an approach that recognizes the RV locations where the correlations between the RV and the activity indicators significantly change in order to better account for variations in RV caused by stellar activity. The proposed approach uses a general family of statistical breakpoint methods, often referred to as change point detection (CPD) algorithms; several implementations of which are available in R and python. A thorough comparison is made between the breakpoint-based approach and the overall correction method. To ensure wide representativity, we use measurements from real stars that have different levels of stellar activity and whose spectra have different signal-to-noise ratios. When the corrections for stellar activity are applied separately to each temporal segment identified by the breakpoint method, the corresponding residuals in the RV time series are typically much smaller than those obtained by the overall correction method. Consequently, the generalized Lomb-Scargle periodogram contains a smaller number of peaks caused by active regions. The CPD algorithm is particularly effective when focusing on active stars with long time series, such as alpha Cen B.<br />Comment: 31 pages, 18 Figures

Details

Database :
arXiv
Journal :
A&A 664, A127 (2022)
Publication Type :
Report
Accession number :
edsarx.2205.11136
Document Type :
Working Paper
Full Text :
https://doi.org/10.1051/0004-6361/202142941