Back to Search
Start Over
Normalized solutions for Schr\'{o}dinger-Bopp-Podolsky system
- Publication Year :
- 2022
-
Abstract
- In this paper, we study the following energy functional originates from the Schr\"{o}dinger-Bopp-Podolsky system $$I(u)=\frac{1}{2}\int_{\mathbb{R}^{3}}|\nabla u|^{2}dx+\frac{1}{4}\int_{\mathbb{R}^{3}} \phi_{u}u^{2}dx-\frac{1}{p}\int_{\mathbb{R}^{3}}|u|^{p}dx$$ constrained on $B_{\rho}=\left\{u\in H^{1}(\mathbb{R}^{3},C):\ \left\|u\right\|_{2}=\rho\right\},$ where $\rho>0.$ As such constrained problem $I(u)$ is bounded from below on $B_{\rho}$ when $p\in(2,\frac{10}{3}).$ We use minimizing method to get a normalized solution.
- Subjects :
- Mathematics - Analysis of PDEs
35J48, 35J50, 35Q60
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2206.04008
- Document Type :
- Working Paper