Back to Search
Start Over
Analysis of Learner Independent Variables for Estimating Assessment Items Difficulty Level
- Publication Year :
- 2022
-
Abstract
- The quality of assessment determines the quality of learning, and is characterized by validity, reliability and difficulty. Mastery of learning is generally represented by the difficulty levels of assessment items. A very large number of variables are identified in the literature to measure the difficulty level. These variables, which are not completely independent of one another, are categorized into learner dependent, learner independent, generic, non-generic and score based. This research proposes a model for predicting the difficulty level of assessment items in engineering courses using learner independent and generic variables. An ordinal regression model is developed for predicting the difficulty level, and uses six variables including three stimuli variables (item presentation, usage of technical notations and number of resources), two content related variables (number of concepts and procedures) and one task variable (number of conditions). Experimental results from three engineering courses provide around 80% accuracy in classification of items using the proposed model.<br />Comment: 16 pages
- Subjects :
- Computer Science - Computers and Society
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2206.04416
- Document Type :
- Working Paper