Back to Search
Start Over
Direct measurement of the $^3$He$^+$ magnetic moments
- Publication Year :
- 2022
-
Abstract
- Helium-3 has nowadays become one of the most important candidates for studies in fundamental physics [1, 2, 3], nuclear and atomic structure [4, 5], magnetometry and metrology [6] as well as chemistry and medicine [7, 8]. In particular, $^3$He nuclear magnetic resonance (NMR) probes have been proposed as a new standard for absolute magnetometry [6, 9]. This requires a high-accuracy value for the $^3$He nuclear magnetic moment, which, however, has so far been determined only indirectly and with a relative precision of $12$ parts per billon (p.p.b.) [10,11]. Here we investigate the $^3$He$^+$ ground-state hyperfine structure in a Penning trap to directly measure the nuclear $g$-factor of $^3$He$^+$ $g'_I=-4.255\, 099\, 606\, 9(30)_{stat}(17)_{sys}$, the zero-field hyperfine splitting $E_{\rm HFS}^{\rm exp}=-8\, 665\, 649\, 865.77(26)_{stat}(1)_{sys}$ Hz and the bound electron $g$-factor $g_e^\text{exp}=-2.002\, 177\, 415\, 79(34)_{stat}(30)_{sys}$. The latter is consistent with our theoretical value $g_e^\text{theo}=-2.002\, 177\, 416\, 252\, 23(39)$ based on parameters and fundamental constants from [12]. Our measured value for the $^3$He$^+$ nuclear $g$-factor allows for the determination of the $g$-factor of the bare nucleus $g_I=-4.255\, 250\, 699\, 7(30)_{stat}(17)_{sys}(1)_{theo}$ via our accurate calculation of the diamagnetic shielding constant [13] $\sigma_{^3He^+}=0.000\,035\,507\,38(3)$. This constitutes the first direct calibration for $^3$He NMR probes and an improvement of the precision by one order of magnitude compared to previous indirect results. The measured zero-field hyperfine splitting improves the precision by two orders of magnitude compared to the previous most precise value [14] and enables us to determine the Zemach radius [15] to $r_Z=2.608(24)$ fm.
- Subjects :
- Physics - Atomic Physics
Nuclear Experiment
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2206.05943
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1038/s41586-022-04761-7