Back to Search Start Over

Experimental Demonstration of High-Performance Physical Reservoir Computing with Nonlinear Interfered Spin Wave Multi-Detection

Authors :
Namiki, Wataru
Nishioka, Daiki
Yamaguchi, Yu
Tsuchiya, Takashi
Higuchi, Tohru
Terabe, Kazuya
Publication Year :
2022

Abstract

Physical reservoir computing, which is a promising method for the implementation of highly efficient artificial intelligence devices, requires a physical system with nonlinearity, fading memory, and the ability to map in high dimensions. Although it is expected that spin wave interference can perform as highly efficient reservoir computing in some micromagnetic simulations, there has been no experimental verification to date. Herein, we demonstrate reservoir computing that utilizes multidetected nonlinear spin wave interference in an yttrium iron garnet single crystal. The subject computing system achieved excellent performance when used for hand-written digit recognition, second-order nonlinear dynamical tasks, and nonlinear autoregressive moving average (NARMA). It is of particular note that normalized mean square errors (NMSEs) for NARMA2 and second-order nonlinear dynamical tasks were 1.81x10-2 and 8.37x10-5, respectively, which are the lowest figures for any experimental physical reservoir so far reported. Said high performance was achieved with higher nonlinearity and the large memory capacity of interfered spin wave multi-detection.<br />Comment: 19 pages, 5 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2207.03216
Document Type :
Working Paper