Back to Search Start Over

A Comprehensive Empirical Study of Bias Mitigation Methods for Machine Learning Classifiers

Authors :
Chen, Zhenpeng
Zhang, Jie M.
Sarro, Federica
Harman, Mark
Publication Year :
2022

Abstract

Software bias is an increasingly important operational concern for software engineers. We present a large-scale, comprehensive empirical study of 17 representative bias mitigation methods for Machine Learning (ML) classifiers, evaluated with 11 ML performance metrics (e.g., accuracy), 4 fairness metrics, and 20 types of fairness-performance trade-off assessment, applied to 8 widely-adopted software decision tasks. The empirical coverage is much more comprehensive, covering the largest numbers of bias mitigation methods, evaluation metrics, and fairness-performance trade-off measures compared to previous work on this important software property. We find that (1) the bias mitigation methods significantly decrease ML performance in 53% of the studied scenarios (ranging between 42%~66% according to different ML performance metrics); (2) the bias mitigation methods significantly improve fairness measured by the 4 used metrics in 46% of all the scenarios (ranging between 24%~59% according to different fairness metrics); (3) the bias mitigation methods even lead to decrease in both fairness and ML performance in 25% of the scenarios; (4) the effectiveness of the bias mitigation methods depends on tasks, models, the choice of protected attributes, and the set of metrics used to assess fairness and ML performance; (5) there is no bias mitigation method that can achieve the best trade-off in all the scenarios. The best method that we find outperforms other methods in 30% of the scenarios. Researchers and practitioners need to choose the bias mitigation method best suited to their intended application scenario(s).<br />Comment: Accepted by ACM Transactions on Software Engineering and Methodology (TOSEM 2023). Please include TOSEM in any citations

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2207.03277
Document Type :
Working Paper