Back to Search
Start Over
Stochastic accretion of the Earth
- Publication Year :
- 2022
-
Abstract
- Earth is depleted in volatile elements relative to chondritic meteorites, its possible building blocks. The extent of this depletion increases with decreasing condensation temperature, and is approximated by a cumulative normal distribution, unlike that in any chondrite. However, moderately volatile elements, occupying the mid-range of the distribution, have chondritic isotope ratios, contrary to that expected from loss by partial vaporisation/condensation. Here we reconcile these observations by showing, using N-body simulations, that Earth accreted stochastically from many precursor bodies whose variable compositions reflect the temperatures at which they formed. Impact-induced atmospheric loss was efficient only when the proto-Earth was small, and elements that accreted thereafter retain near-chondritic isotope ratios. Earth's composition is reproduced when initial temperatures of planetesimal- to embryo-sized bodies are set by disk accretion rates of (1.08 $\pm$ 0.17) $\times$ 10$^{-7}$ solar masses/yr, although they may be perturbed by $^{26}$Al heating on bodies formed at different times. The model implies a heliocentric gradient in composition and rapid planetesimal formation within $\sim$ 1 Myr, in accord with radiometric volatile depletion ages of Earth.<br />Comment: 13 pages, 4 figures. Nat Astron (2022)
- Subjects :
- Astrophysics - Earth and Planetary Astrophysics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2207.08156
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1038/s41550-022-01702-2