Back to Search
Start Over
The differentiation operator on discrete function spaces of a tree
- Source :
- Involve 15 (2022), no. 1, 163-184
- Publication Year :
- 2022
-
Abstract
- In this paper, we study the differentiation operator acting on discrete function spaces; that is spaces of functions defined on an infinite rooted tree. We discuss, through its connection with composition operators, the boundedness and compactness of this operator. In addition, we discuss the operator norm and spectrum, and consider when such an operator can be an isometry. We then apply these results to the operator acting on the discrete Lipschitz space and weighted Banach spaces, as well as the Hardy spaces defined on homogeneous trees.
- Subjects :
- Mathematics - Functional Analysis
primary: 47B38, secondary: 05C05
Subjects
Details
- Database :
- arXiv
- Journal :
- Involve 15 (2022), no. 1, 163-184
- Publication Type :
- Report
- Accession number :
- edsarx.2207.10211
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.2140/involve.2022.15.163