Back to Search
Start Over
On isometric embeddings into the set of strongly norm-attaining Lipschitz functions
- Publication Year :
- 2022
-
Abstract
- In this paper, we provide an infinite metric space $M$ such that the set $\mbox{SNA}(M)$ of strongly norm-attaining Lipschitz functions does not contain a subspace which is isometric to $c_0$. This answers a question posed by Antonio Avil\'es, Gonzalo Mart\'inez Cervantes, Abraham Rueda Zoca, and Pedro Tradacete. On the other hand, we prove that $\mbox{SNA}(M)$ contains an isometric copy of $c_0$ whenever $M$ is a metric space which is not uniformly discrete. In particular, the latter holds true for infinite compact metric spaces while it does not for proper metric spaces. Some positive results in the non-separable setting are also given.
- Subjects :
- Mathematics - Functional Analysis
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2208.02916
- Document Type :
- Working Paper