Back to Search Start Over

Concentrated subradiant modes in one-dimensional atomic array coupled with chiral waveguides

Authors :
Yang, Mengjie
Wang, Luojia
Wu, Xiaoxiong
Xiao, Han
Yu, Danying
Yuan, Luqi
Chen, Xianfeng
Source :
Phys. Rev. A.106, 043717 (2022)
Publication Year :
2022

Abstract

Non-Hermitian systems have recently attracted broad interest and exhibited intriguing physical phenomena, in which the non-Hermitian skin effect is one of the most remarkable quantum phenomena desiring detailed investigations and has been widely studied in various fermionic and bosonic systems. Here we propose a non-Hermitian atom-waveguide system composed of a tilted one-dimensional atomic array coupled with two identical waveguides with opposite chiralities. Such system creates an effective lattice model including nonreciprocal long-range hoppings through the chiral-waveguide photon-mediated interactions. We find the excitation of the collective atomic states concentrates in the middle interface, pointing towards the non-Hermitian skin effect associated with subradiant modes, while, on the contrary, superradiant modes exhibit extended features. Simulation results present subradiant funneling effect, with robustness against small atomic position disorders. Our work underpins the fundamental comprehension towards the non-Hermitian skin effect in open quantum systems and also provide prospective paths to study non-Hermitian systems in the area of quantum optics.<br />Comment: 16 pages, 4 figures

Subjects

Subjects :
Quantum Physics
Physics - Optics

Details

Database :
arXiv
Journal :
Phys. Rev. A.106, 043717 (2022)
Publication Type :
Report
Accession number :
edsarx.2208.10785
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevA.106.043717