Back to Search Start Over

Supporting Medical Relation Extraction via Causality-Pruned Semantic Dependency Forest

Authors :
Jin, Yifan
Li, Jiangmeng
Lian, Zheng
Jiao, Chengbo
Hu, Xiaohui
Publication Year :
2022

Abstract

Medical Relation Extraction (MRE) task aims to extract relations between entities in medical texts. Traditional relation extraction methods achieve impressive success by exploring the syntactic information, e.g., dependency tree. However, the quality of the 1-best dependency tree for medical texts produced by an out-of-domain parser is relatively limited so that the performance of medical relation extraction method may degenerate. To this end, we propose a method to jointly model semantic and syntactic information from medical texts based on causal explanation theory. We generate dependency forests consisting of the semantic-embedded 1-best dependency tree. Then, a task-specific causal explainer is adopted to prune the dependency forests, which are further fed into a designed graph convolutional network to learn the corresponding representation for downstream task. Empirically, the various comparisons on benchmark medical datasets demonstrate the effectiveness of our model.<br />Comment: Accepted to the conference of COLING2022 as an Oral presentation

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2208.13472
Document Type :
Working Paper