Back to Search Start Over

Secular Equilibrium Assessment in a $\mathrm{CaWO}_4$ Target Crystal from the Dark Matter Experiment CRESST using Bayesian Likelihood Normalisation

Authors :
Angloher, G.
Banik, S.
Benato, G.
Bento, A.
Bertolini, A.
Breier, R.
Bucci, C.
Burkhart, J.
Canonica, L.
D'Addabbo, A.
Di Lorenzo, S.
Einfalt, L.
Erb, A.
Feilitzsch, F. v.
Iachellini, N. Ferreiro
Fichtinger, S.
Fuchs, D.
Fuss, A.
Garai, A.
Ghete, V. M.
Gorla, P.
Gupta, S.
Hauff, D.
Ješkovský, M.
Jochum, J.
Kaznacheeva, M.
Kinast, A.
Kluck, H.
Kraus, H.
Langenkämper, A.
Mancuso, M.
Marini, L.
Mokina, V.
Nilima, A.
Olmi, M.
Ortmann, T.
Pagliarone, C.
Pattavina, L.
Petricca, F.
Potzel, W.
Povinec, P.
Pröbst, F.
Pucci, F.
Reindl, F.
Rothe, J.
Schäffner, K.
Schieck, J.
Schmiedmayer, D.
Schönert, S.
Schwertner, C.
Stahlberg, M.
Stodolsky, L.
Strandhagen, C.
Strauss, R.
Usherov, I.
Wagner, F.
Willers, M.
Zema, V.
Ferella, F.
Laubenstein, M.
Nisi, S.
Source :
Applied Radiation and Isotopes, 194 (2023) 110670
Publication Year :
2022

Abstract

CRESST is a leading direct detection sub-$\mathrm{GeVc}^{-2}$ dark matter experiment. During its second phase, cryogenic bolometers were used to detect nuclear recoils off the $\mathrm{CaWO}_4$ target crystal nuclei. The previously established electromagnetic background model relies on secular equilibrium (SE) assumptions. In this work, a validation of SE is attempted by comparing two likelihood-based normalisation results using a recently developed spectral template normalisation method based on Bayesian likelihood. We find deviations from SE; further investigations are necessary to determine their origin.<br />Comment: Part of special issue: ICRM-LLRMT22 8th International Conference on Radionuclide Metrology - Low Level Radioactivity Measurement and Techniques, 6 pages, 3 figures

Details

Database :
arXiv
Journal :
Applied Radiation and Isotopes, 194 (2023) 110670
Publication Type :
Report
Accession number :
edsarx.2209.00461
Document Type :
Working Paper
Full Text :
https://doi.org/10.1016/j.apradiso.2023.110670