Back to Search
Start Over
SsODNet: The Solar system Open Database Network
- Source :
- A&A 671, A151 (2023)
- Publication Year :
- 2022
-
Abstract
- The sample of Solar system objects has dramatically increased over the last decade. The amount of measured properties (e.g., diameter, taxonomy, rotation period, thermal inertia) has grown even faster. However, this wealth of information is spread over a myriad of articles, under many different designations per object. We provide a solution to the identification of Solar system objects from any of their multiple names or designations. We also compile and rationalize their properties to provide an easy access to them. We aim to continuously update the database as new measurements become available. We built a Web Service, SsODNet, that offers four access points, each corresponding to an identified necessity in the community: name resolution (quaero), compilation of a large corpus of properties (datacloud), determination of the best estimate among compiled values (ssoCard), and statistical description of the population (ssoBFT). The SsODNet interfaces are fully operational and freely accessible to everyone. The name resolver quaero translates any of the ~5.3 million designations of objects into their current official designation. The datacloud compiles about 105 million parameters (osculating and proper elements, pair and family membership, diameter, albedo, mass, density, rotation period, spin coordinates, phase function parameters, colors, taxonomy, thermal inertia, and Yarkovsky drift) from over 3,000 articles (and growing). For each of the known asteroids and dwarf planets (~1.2 million), a ssoCard providing a single best-estimate for each parameter is available. The SsODNet service provides these resources in a fraction of second upon query. Finally, the large ssoBFT table compiles all the best-estimates in a single table for population-wide studies.
Details
- Database :
- arXiv
- Journal :
- A&A 671, A151 (2023)
- Publication Type :
- Report
- Accession number :
- edsarx.2209.10697
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1051/0004-6361/202244878