Back to Search Start Over

New Approach for Vorticity Estimates of Solutions of the Navier-Stokes Equations

Authors :
Chen, Gui-Qiang G.
Qian, Zhongmin
Publication Year :
2022

Abstract

We develop a new approach for regularity estimates, especially vorticity estimates, of solutions of the three-dimensional Navier-Stokes equations with periodic initial data, by exploiting carefully formulated linearized vorticity equations. An appealing feature of the linearized vorticity equations is the inheritance of the divergence-free property of solutions, so that it can intrinsically be employed to construct and estimate solutions of the Navier-Stokes equations. New regularity estimates of strong solutions of the three-dimensional Navier-Stokes equations are obtained by deriving new explicit a priori estimates for the heat kernel (i.e., the fundamental solution) of the corresponding heterogeneous drift-diffusion operator. These new a priori estimates are derived by using various functional integral representations of the heat kernel in terms of the associated diffusion processes and their conditional laws, including a Bismut-type formula for the gradient of the heat kernel. Then the a priori estimates of solutions of the linearized vorticity equations are established by employing a Feynman-Kac-type formula. The existence of strong solutions and their regularity estimates up to a time proportional to the reciprocal of the square of the maximum initial vorticity are established. All the estimates established in this paper contain known constants that can be explicitly computed.<br />Comment: 27 pages

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2210.04129
Document Type :
Working Paper