Back to Search
Start Over
InterFair: Debiasing with Natural Language Feedback for Fair Interpretable Predictions
- Publication Year :
- 2022
-
Abstract
- Debiasing methods in NLP models traditionally focus on isolating information related to a sensitive attribute (e.g., gender or race). We instead argue that a favorable debiasing method should use sensitive information 'fairly,' with explanations, rather than blindly eliminating it. This fair balance is often subjective and can be challenging to achieve algorithmically. We explore two interactive setups with a frozen predictive model and show that users able to provide feedback can achieve a better and fairer balance between task performance and bias mitigation. In one setup, users, by interacting with test examples, further decreased bias in the explanations (5-8%) while maintaining the same prediction accuracy. In the other setup, human feedback was able to disentangle associated bias and predictive information from the input leading to superior bias mitigation and improved task performance (4-5%) simultaneously.<br />Comment: Accepted in EMNLP 2023 (Main)
- Subjects :
- Computer Science - Computation and Language
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2210.07440
- Document Type :
- Working Paper