Back to Search Start Over

The Commutator of the Bergman Projection on Strongly Pseudoconvex Domains with Minimal Smoothness

Authors :
Hu, Bingyang
Huo, Zhenghui
Lanzani, Loredana
Palencia, Kevin
Wagner, Nathan A.
Publication Year :
2022

Abstract

Consider a bounded, strongly pseudoconvex domain $D\subset \mathbb C^n$ with minimal smoothness (namely, the class $C^2$) and let $b$ be a locally integrable function on $D$. We characterize boundedness (resp., compactness) in $L^p(D), p > 1$, of the commutator $[b, P]$ of the Bergman projection $P$ in terms of an appropriate bounded (resp. vanishing) mean oscillation requirement on $b$. We also establish the equivalence of such notion of BMO (resp., VMO) with other BMO and VMO spaces given in the literature. Our proofs use a dyadic analog of the Berezin transform and holomorphic integral representations going back (for smooth domains) to N. Kerzman & E. M. Stein, and E. Ligocka.<br />Comment: 35 pages with references

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2210.10640
Document Type :
Working Paper