Back to Search
Start Over
Knowledge-Enhanced Relation Extraction Dataset
- Publication Year :
- 2022
-
Abstract
- Recently, knowledge-enhanced methods leveraging auxiliary knowledge graphs have emerged in relation extraction, surpassing traditional text-based approaches. However, to our best knowledge, there is currently no public dataset available that encompasses both evidence sentences and knowledge graphs for knowledge-enhanced relation extraction. To address this gap, we introduce the Knowledge-Enhanced Relation Extraction Dataset (KERED). KERED annotates each sentence with a relational fact, and it provides knowledge context for entities through entity linking. Using our curated dataset, We compared contemporary relation extraction methods under two prevalent task settings: sentence-level and bag-level. The experimental result shows the knowledge graphs provided by KERED can support knowledge-enhanced relation extraction methods. We believe that KERED offers high-quality relation extraction datasets with corresponding knowledge graphs for evaluating the performance of knowledge-enhanced relation extraction methods. Our dataset is available at: \url{https://figshare.com/projects/KERED/134459}<br />Comment: 20 pages, 6 figures, submitted to Neural Computing and Applications
- Subjects :
- Computer Science - Machine Learning
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2210.11231
- Document Type :
- Working Paper