Back to Search
Start Over
CCS Explorer: Relevance Prediction, Extractive Summarization, and Named Entity Recognition from Clinical Cohort Studies
- Publication Year :
- 2022
-
Abstract
- Clinical Cohort Studies (CCS), such as randomized clinical trials, are a great source of documented clinical research. Ideally, a clinical expert inspects these articles for exploratory analysis ranging from drug discovery for evaluating the efficacy of existing drugs in tackling emerging diseases to the first test of newly developed drugs. However, more than 100 articles are published daily on a single prevalent disease like COVID-19 in PubMed. As a result, it can take days for a physician to find articles and extract relevant information. Can we develop a system to sift through the long list of these articles faster and document the crucial takeaways from each of these articles? In this work, we propose CCS Explorer, an end-to-end system for relevance prediction of sentences, extractive summarization, and patient, outcome, and intervention entity detection from CCS. CCS Explorer is packaged in a web-based graphical user interface where the user can provide any disease name. CCS Explorer then extracts and aggregates all relevant information from articles on PubMed based on the results of an automatically generated query produced on the back-end. For each task, CCS Explorer fine-tunes pre-trained language representation models based on transformers with additional layers. The models are evaluated using two publicly available datasets. CCS Explorer obtains a recall of 80.2%, AUC-ROC of 0.843, and an accuracy of 88.3% on sentence relevance prediction using BioBERT and achieves an average Micro F1-Score of 77.8% on Patient, Intervention, Outcome detection (PIO) using PubMedBERT. Thus, CCS Explorer can reliably extract relevant information to summarize articles, saving time by $\sim \text{660}\times$.<br />Comment: Accepted at IEEE BigData 2022
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2211.00201
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1109/BigData55660.2022.10020807