Back to Search Start Over

3-D mesh compensated wavelet lifting for 3-D+t medical CT data

Authors :
Schnurrer, Wolfgang
Richter, Thomas
Seiler, Jürgen
Herglotz, Christian
Kaup, André
Source :
IEEE International Conference on Image Processing (ICIP), 2014, pp. 3631-3635
Publication Year :
2022

Abstract

For scalable coding, a high quality of the lowpass band of a wavelet transform is crucial when it is used as a downscaled version of the original signal. However, blur and motion can lead to disturbing artifacts. By incorporating feasible compensation methods directly into the wavelet transform, the quality of the lowpass band can be improved. The displacement in dynamic medical 3-D+t volumes from Computed Tomography is mainly given by expansion and compression of tissue over time and can be modeled well by mesh-based methods. We extend a 2-D mesh-based compensation method to three dimensions to obtain a volume compensation method that can additionally compensate deforming displacements in the third dimension. We show that a 3-D mesh can obtain a higher quality of the lowpass band by 0.28 dB with less than 40% of the model parameters of a comparable 2-D mesh. Results from lossless coding with JPEG 2000 3D and SPECK3D show that the compensated subbands using a 3-D mesh need about 6% less data compared to using a 2-D mesh.

Details

Database :
arXiv
Journal :
IEEE International Conference on Image Processing (ICIP), 2014, pp. 3631-3635
Publication Type :
Report
Accession number :
edsarx.2212.04324
Document Type :
Working Paper