Back to Search Start Over

CDIO-CT collaborative strategy for solving complex STEM problems in system modeling and simulation: an illustration of solving the period of mathematical pendulum

Authors :
Zhang, Hong-Yan
Zhou, Yu
Li, Yu-Tao
Li, Fu-Yun
Jiang, Yong-Hui
Source :
Computer Applications in Engineering Education, 2023(11): e22698
Publication Year :
2022

Abstract

The problem-project-oriented STEM education plays a significant role in training students' ability of innovation. Although the conceive-design-implement-operate (CDIO) approach and the computational thinking (CT) are hot topics in recent decade, there are still two deficiencies: the CDIO approach and CT are discussed separately and a general framework of coping with complex STEM problems in system modeling and simulation is missing. In this paper, a collaborative strategy based on the CDIO and CT is proposed for solving complex STEM problems in system modeling and simulation with a general framework, in which the CDIO is about ``how to do", CT is about ``how to think", and the project means ``what to do". As an illustration, the problem of solving the period of mathematical pendulum (MP) is discussed in detail. The most challenging task involved in the problem is to compute the complete elliptic integral of the first kind (CEI-1). In the philosophy of STEM education, all problems have more than one solutions. For computing the CEI-1, four methods are discussed with a top-down strategy, which includes the infinite series method, arithmetic-geometric mean (AGM) method, Gauss-Chebyshev method and Gauss-Legendre method. The algorithms involved can be utilized for R & D projects of interest and be reused according to the requirements encountered. The general framework for solving complex STEM problem in system modeling and simulation is worth recommending to the college students and instructors.<br />Comment: 27 pages, 12 figures, 11 tables

Details

Database :
arXiv
Journal :
Computer Applications in Engineering Education, 2023(11): e22698
Publication Type :
Report
Accession number :
edsarx.2212.09209
Document Type :
Working Paper
Full Text :
https://doi.org/10.1002/cae.22698