Back to Search Start Over

Activity Detection for Grant-Free NOMA in Massive IoT Networks

Authors :
Mehrabi, Mehrtash
Mohammadkarimi, Mostafa
Ardakani, Masoud
Publication Year :
2022

Abstract

Recently, grant-free transmission paradigm has been introduced for massive Internet of Things (IoT) networks to save both time and bandwidth and transmit the message with low latency. In order to accurately decode the message of each device at the base station (BS), first, the active devices at each transmission frame must be identified. In this work, first we investigate the problem of activity detection as a threshold comparing problem. We show the convexity of the activity detection method through analyzing its probability of error which makes it possible to find the optimal threshold for minimizing the activity detection error. Consequently, to achieve an optimum solution, we propose a deep learning (DL)-based method called convolutional neural network (CNN)-activity detection (AD). In order to make it more practical, we consider unknown and time-varying activity rate for the IoT devices. Our simulations verify that our proposed CNN-AD method can achieve higher performance compared to the existing non-Bayesian greedy-based methods. This is while existing methods need to know the activity rate of IoT devices, while our method works for unknown and even time-varying activity rates<br />Comment: Accepted in International Conference on Computing, Networking and Communications (ICNC 2023)

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2301.01274
Document Type :
Working Paper