Back to Search Start Over

Turing pattern or system heterogeneity? A numerical continuation approach to assessing the role of Turing instabilities in heterogeneous reaction-diffusion systems

Authors :
Vandenberg, Jacob C.
Flegg, Mark B.
Publication Year :
2023

Abstract

Turing patterns in reaction-diffusion (RD) systems have classically been studied only in RD systems which do not explicitly depend on independent variables such as space. In practise, many systems for which Turing patterning is important are not homogeneous with ideal boundary conditions. In heterogeneous systems with stable steady states, the steady states are also necessarily heterogeneous which is problematic for applying the classical analysis. Whilst there has been some work done to extend Turing analysis to some heterogeneous systems, for many systems it is still difficult to determine if a stable patterned state is driven purely by system heterogeneity or if a Turing instability is playing a role. In this work, we try to define a framework which uses numerical continuation to map heterogeneous RD systems onto a sensible nearby homogeneous system. This framework may be used for discussing the role of Turing instabilities in establishing patterns in heterogeneous RD systems. We study the Schnakenberg and Gierer-Meinhardt models with spatially heterogeneous production as test problems. It is shown that for sufficiently large system heterogeneity (large amplitude spatial variations in morphogen production) it is possible that Turing-patterned and base states become coincident and therefore impossible to distinguish. Other exotic behaviour is also shown to be possible. We also study a novel scenario in which morphogen is produced locally at levels that could support Turing patterning but on intervals/patches which are on the scale of classical critical domain lengths. Without classical domain boundaries, Turing patterns are allowed to bleed through; an effect noted by other authors. In this case, this phenomena effectively changes the critical domain length. Indeed, we even note that this phenomena may also effectively couple local patches together and drive instability in this way.<br />Comment: 10 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2301.08373
Document Type :
Working Paper