Back to Search Start Over

XNLI: Explaining and Diagnosing NLI-based Visual Data Analysis

Authors :
Feng, Yingchaojie
Wang, Xingbo
Pan, Bo
Wong, Kam Kwai
Ren, Yi
Liu, Shi
Yan, Zihan
Ma, Yuxin
Qu, Huamin
Chen, Wei
Publication Year :
2023

Abstract

Natural language interfaces (NLIs) enable users to flexibly specify analytical intentions in data visualization. However, diagnosing the visualization results without understanding the underlying generation process is challenging. Our research explores how to provide explanations for NLIs to help users locate the problems and further revise the queries. We present XNLI, an explainable NLI system for visual data analysis. The system introduces a Provenance Generator to reveal the detailed process of visual transformations, a suite of interactive widgets to support error adjustments, and a Hint Generator to provide query revision hints based on the analysis of user queries and interactions. Two usage scenarios of XNLI and a user study verify the effectiveness and usability of the system. Results suggest that XNLI can significantly enhance task accuracy without interrupting the NLI-based analysis process.<br />Comment: 14 pages, 7 figures. A preprint version of a publication at IEEE Transactions on Visualization and Computer Graphics (TVCG), 2023

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2301.10385
Document Type :
Working Paper
Full Text :
https://doi.org/10.1109/TVCG.2023.3240003