Back to Search
Start Over
Superalgebra deformations of web categories: finite webs
- Publication Year :
- 2023
-
Abstract
- Let $\mathbb{k}$ be a characteristic zero domain. For a locally unital $\mathbb{k}$-superalgebra $A$ with distinguished idempotents $I$and even subalgebra $a \subseteq A_{\bar 0}$, we define and study an associated diagrammatic monoidal $\mathbb{k}$-linear supercategory $\mathbf{Web}^{A,a}_I$. This supercategory yields a diagrammatic description of the generalized Schur algebras $T^A_a(n,d)$. We also show there is an asymptotically faithful functor from $\mathbf{Web}^{A,a}_I$ to the monoidal supercategory of $\mathfrak{gl}_n(A)$-modules generated by symmetric powers of the natural module. When this functor is full, the single diagrammatic supercategory $\mathbf{Web}^{A,a}_I$ provides a combinatorial description of this module category for all $n \geq 1$. We also use these results to establish Howe dualities between $\mathfrak{gl}_{m}(A)$ and $\mathfrak{gl}_{n}(A)$ when $A$ is semisimple.<br />Comment: 64 pages. Numerous diagrams, best viewed in color
- Subjects :
- Mathematics - Representation Theory
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2302.04073
- Document Type :
- Working Paper