Back to Search Start Over

Accelerated Video Annotation driven by Deep Detector and Tracker

Authors :
Price, Eric
Ahmad, Aamir
Source :
Intelligent Autonomous Systems 18, 2023
Publication Year :
2023

Abstract

Annotating object ground truth in videos is vital for several downstream tasks in robot perception and machine learning, such as for evaluating the performance of an object tracker or training an image-based object detector. The accuracy of the annotated instances of the moving objects on every image frame in a video is crucially important. Achieving that through manual annotations is not only very time consuming and labor intensive, but is also prone to high error rate. State-of-the-art annotation methods depend on manually initializing the object bounding boxes only in the first frame and then use classical tracking methods, e.g., adaboost, or kernelized correlation filters, to keep track of those bounding boxes. These can quickly drift, thereby requiring tedious manual supervision. In this paper, we propose a new annotation method which leverages a combination of a learning-based detector (SSD) and a learning-based tracker (RE$^3$). Through this, we significantly reduce annotation drifts, and, consequently, the required manual supervision. We validate our approach through annotation experiments using our proposed annotation method and existing baselines on a set of drone video frames. Source code and detailed information on how to run the annotation program can be found at https://github.com/robot-perception-group/smarter-labelme<br />Comment: 8 pages, 5 figures

Details

Database :
arXiv
Journal :
Intelligent Autonomous Systems 18, 2023
Publication Type :
Report
Accession number :
edsarx.2302.09590
Document Type :
Working Paper
Full Text :
https://doi.org/10.1007/978-3-031-44981-9_12