Back to Search Start Over

Zonostrophic instabilities in magnetohydrodynamic Kolmogorov flow

Authors :
Algatheem, Azza M
Gilbert, Andrew D
Hillier, Andrew S
Publication Year :
2023

Abstract

This paper concerns the stability of Kolmogorov flow u = (0, sin x) in the infinite (x,y)-plane. A mean magnetic field of strength B0 is introduced and the MHD linear stability problem studied for modes with wave-number k in the y-direction, and Bloch wavenumber l in the x-direction. The parameters governing the problem are Reynolds number 1/nu, magnetic Prandtl number P, and dimensionless magnetic field strength B0. The mean magnetic field can be taken to have an arbitrary direction in the (x,y)-plane and a mean x-directed flow U0 can be incorporated. First the paper considers Kolmogorov flow with y-directed mean magnetic field, referred to as vertical. Taking l=0, the suppression of the pure hydrodynamic instability is observed with increasing field strength B0. A branch of strong-field instabilities occurs for magnetic Prandtl number P less than unity, as found by A.E. Fraser, I.G. Cresser and P. Garaud (J. Fluid Mech. 949, A43, 2022). Analytical results using eigenvalue perturbation theory in the limit k->0 support the numerics for both weak- and strong-field instabilities, and originate in the coupling of large-scale modes with x-wavenumber n=0, to smaller-scale modes. The paper considers the case of horizontal or x-directed mean magnetic field. The unperturbed state consists of steady, wavey magnetic field lines. As the magnetic field is increased, the purely hydrodynamic instability is suppressed again, but for stronger fields a new branch of instabilities appears. Allowing a non-zero Bloch wavenumber l allows further instability, and in some circumstances when the system is hydrodynamically stable, arbitrarily weak magnetic fields can give growing modes. Numerical results are presented together with eigenvalue perturbation theory in the limits k,l->0. The theory gives analytical approximations for growth rates and thresholds in good agreement with those computed.<br />Comment: 29 pages, 11 figures

Subjects

Subjects :
Physics - Fluid Dynamics

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2303.05212
Document Type :
Working Paper