Back to Search Start Over

Speech Intelligibility Classifiers from 550k Disordered Speech Samples

Authors :
Venugopalan, Subhashini
Tobin, Jimmy
Yang, Samuel J.
Seaver, Katie
Cave, Richard J. N.
Jiang, Pan-Pan
Zeghidour, Neil
Heywood, Rus
Green, Jordan
Brenner, Michael P.
Publication Year :
2023

Abstract

We developed dysarthric speech intelligibility classifiers on 551,176 disordered speech samples contributed by a diverse set of 468 speakers, with a range of self-reported speaking disorders and rated for their overall intelligibility on a five-point scale. We trained three models following different deep learning approaches and evaluated them on ~94K utterances from 100 speakers. We further found the models to generalize well (without further training) on the TORGO database (100% accuracy), UASpeech (0.93 correlation), ALS-TDI PMP (0.81 AUC) datasets as well as on a dataset of realistic unprompted speech we gathered (106 dysarthric and 76 control speakers,~2300 samples).<br />Comment: ICASSP 2023 camera-ready

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2303.07533
Document Type :
Working Paper