Back to Search
Start Over
Speech Intelligibility Classifiers from 550k Disordered Speech Samples
- Publication Year :
- 2023
-
Abstract
- We developed dysarthric speech intelligibility classifiers on 551,176 disordered speech samples contributed by a diverse set of 468 speakers, with a range of self-reported speaking disorders and rated for their overall intelligibility on a five-point scale. We trained three models following different deep learning approaches and evaluated them on ~94K utterances from 100 speakers. We further found the models to generalize well (without further training) on the TORGO database (100% accuracy), UASpeech (0.93 correlation), ALS-TDI PMP (0.81 AUC) datasets as well as on a dataset of realistic unprompted speech we gathered (106 dysarthric and 76 control speakers,~2300 samples).<br />Comment: ICASSP 2023 camera-ready
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2303.07533
- Document Type :
- Working Paper