Back to Search
Start Over
Distribution of values of general Euler totient function
- Publication Year :
- 2023
-
Abstract
- Let $\Phi_k(n)=|\{ (x_1, x_2, \cdots, x_k)\in \left(\mathbb{Z}/n\mathbb{Z}\right)^k; \ \gcd(x_1^2+x_2^2+ \cdots+ x_k^2, n)=1\}|$ be a general totient function introduced first by Cald\'{e}ron et. al. Motivated by the classical works of Schoenberg, Erd\H{o}s, Bateman and Diamond on the distribution of $\Phi_1(n)$, we prove results on the joint distribution of $\Phi_k(n)$ for any $k\ge 1$. Additionally, we also exhibit the extremal order of $\Phi_k(n)$.<br />Comment: 24 pages
- Subjects :
- Mathematics - Number Theory
11N60, 11N64, 11M06
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2304.02540
- Document Type :
- Working Paper