Back to Search Start Over

On the Stieltjes constants with respect to harmonic zeta functions

Authors :
Kargın, Levent
Dil, Ayhan
Cenkci, Mehmet
Can, Mümün
Publication Year :
2023

Abstract

The aim of this paper is to investigate harmonic Stieltjes constants occurring in the Laurent expansions of the function \[ \zeta_{H}\left( s,a\right) =\sum_{n=0}^{\infty}\frac{1}{\left( n+a\right) ^{s}}\sum_{k=0}^{n}\frac{1}{k+a},\text{ }\operatorname{Re}\left( s\right) >1, \] which we call harmonic Hurwitz zeta function. In particular evaluation formulas for the harmonic Stieltjes constants $\gamma_{H}\left( m,1/2\right) $ and $\gamma_{H}\left( m,1\right) $ are presented.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2304.03517
Document Type :
Working Paper
Full Text :
https://doi.org/10.1016/j.jmaa.2023.127302