Back to Search
Start Over
On the Stieltjes constants with respect to harmonic zeta functions
- Publication Year :
- 2023
-
Abstract
- The aim of this paper is to investigate harmonic Stieltjes constants occurring in the Laurent expansions of the function \[ \zeta_{H}\left( s,a\right) =\sum_{n=0}^{\infty}\frac{1}{\left( n+a\right) ^{s}}\sum_{k=0}^{n}\frac{1}{k+a},\text{ }\operatorname{Re}\left( s\right) >1, \] which we call harmonic Hurwitz zeta function. In particular evaluation formulas for the harmonic Stieltjes constants $\gamma_{H}\left( m,1/2\right) $ and $\gamma_{H}\left( m,1\right) $ are presented.
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2304.03517
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1016/j.jmaa.2023.127302