Back to Search
Start Over
Rack-aware minimum-storage regenerating codes with optimal access
- Publication Year :
- 2023
-
Abstract
- We derive a lower bound on the amount of information accessed to repair failed nodes within a single rack from any number of helper racks in the rack-aware storage model that allows collective information processing in the nodes that share the same rack. Furthermore, we construct a family of rack-aware minimum-storage regenerating (MSR) codes with the property that the number of symbols accessed for repairing a single failed node attains the bound with equality for all admissible parameters. Constructions of rack-aware optimal-access MSR codes were only known for limited parameters. We also present a family of Reed-Solomon (RS) codes that only require accessing a relatively small number of symbols to repair multiple failed nodes in a single rack. In particular, for certain code parameters, the RS construction attains the bound on the access complexity with equality and thus has optimal access.
- Subjects :
- Computer Science - Information Theory
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2304.08747
- Document Type :
- Working Paper