Back to Search Start Over

The Cosmological Switchback Effect

Authors :
Baiguera, Stefano
Berman, Rotem
Chapman, Shira
Myers, Robert C.
Source :
JHEP 07 (2023) 162
Publication Year :
2023

Abstract

The volume behind the black hole horizon was suggested as a holographic dual for the quantum computational complexity of the boundary state in AdS/CFT. This identification is strongly motivated by the switchback effect: a characteristic delay of complexity growth in reaction to an inserted perturbation, modelled as a shockwave in the bulk. Recent proposals of de Sitter (dS) holography suggest that a dual theory could be living on a stretched horizon near the cosmological horizon. We study how the spacetime volume behind the cosmological horizon in Schwarzschild-dS space reacts to the insertion of shockwaves in an attempt to characterize the properties of this dual theory. We demonstrate that a switchback effect can be observed in dS space. That is, the growth of complexity is delayed in reaction to a perturbation. This delay is longer for earlier shocks and depends on a scrambling time which is logarithmic in the strength of the shockwave and proportional to the inverse temperature of the cosmological dS horizon. This behavior is very similar to what happens for AdS black holes, albeit the geometric origin of the effect is different.<br />Comment: 78 pages, 30 figures; v2: added appendix A, minor changes for journal version

Details

Database :
arXiv
Journal :
JHEP 07 (2023) 162
Publication Type :
Report
Accession number :
edsarx.2304.15008
Document Type :
Working Paper
Full Text :
https://doi.org/10.1007/JHEP07(2023)162