Back to Search Start Over

Dynamic Transformers Provide a False Sense of Efficiency

Authors :
Chen, Yiming
Chen, Simin
Li, Zexin
Yang, Wei
Liu, Cong
Tan, Robby T.
Li, Haizhou
Publication Year :
2023

Abstract

Despite much success in natural language processing (NLP), pre-trained language models typically lead to a high computational cost during inference. Multi-exit is a mainstream approach to address this issue by making a trade-off between efficiency and accuracy, where the saving of computation comes from an early exit. However, whether such saving from early-exiting is robust remains unknown. Motivated by this, we first show that directly adapting existing adversarial attack approaches targeting model accuracy cannot significantly reduce inference efficiency. To this end, we propose a simple yet effective attacking framework, SAME, a novel slowdown attack framework on multi-exit models, which is specially tailored to reduce the efficiency of the multi-exit models. By leveraging the multi-exit models' design characteristics, we utilize all internal predictions to guide the adversarial sample generation instead of merely considering the final prediction. Experiments on the GLUE benchmark show that SAME can effectively diminish the efficiency gain of various multi-exit models by 80% on average, convincingly validating its effectiveness and generalization ability.<br />Comment: Accepted by ACL2023

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2305.12228
Document Type :
Working Paper