Back to Search
Start Over
Rethinking Machine Learning Collective Communication as a Multi-Commodity Flow Problem
- Publication Year :
- 2023
-
Abstract
- We show communication schedulers' recent work proposed for ML collectives does not scale to the increasing problem sizes that arise from training larger models. These works also often produce suboptimal schedules. We make a connection with similar problems in traffic engineering and propose a new method, TECCL, that finds better quality schedules (e.g., finishes collectives faster and/or while sending fewer bytes) and does so more quickly on larger topologies. We present results on many different GPU topologies that show substantial improvement over the state-of-the-art.
- Subjects :
- Computer Science - Networking and Internet Architecture
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2305.13479
- Document Type :
- Working Paper