Back to Search Start Over

ISLE: An Intelligent Streaming Framework for High-Throughput AI Inference in Medical Imaging

Authors :
Kulkarni, Pranav
Garin, Sean
Kanhere, Adway
Siegel, Eliot
Yi, Paul H.
Parekh, Vishwa S.
Publication Year :
2023

Abstract

As the adoption of Artificial Intelligence (AI) systems within the clinical environment grows, limitations in bandwidth and compute can create communication bottlenecks when streaming imaging data, leading to delays in patient care and increased cost. As such, healthcare providers and AI vendors will require greater computational infrastructure, therefore dramatically increasing costs. To that end, we developed ISLE, an intelligent streaming framework for high-throughput, compute- and bandwidth- optimized, and cost effective AI inference for clinical decision making at scale. In our experiments, ISLE on average reduced data transmission by 98.02% and decoding time by 98.09%, while increasing throughput by 2,730%. We show that ISLE results in faster turnaround times, and reduced overall cost of data, transmission, and compute, without negatively impacting clinical decision making using AI systems.<br />Comment: 5 pages, 3 figures, 3 tables

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2305.15617
Document Type :
Working Paper
Full Text :
https://doi.org/10.1007/s10278-024-01173-z