Back to Search Start Over

Self-supervised Learning to Bring Dual Reversed Rolling Shutter Images Alive

Authors :
Shang, Wei
Ren, Dongwei
Feng, Chaoyu
Wang, Xiaotao
Lei, Lei
Zuo, Wangmeng
Publication Year :
2023

Abstract

Modern consumer cameras usually employ the rolling shutter (RS) mechanism, where images are captured by scanning scenes row-by-row, yielding RS distortions for dynamic scenes. To correct RS distortions, existing methods adopt a fully supervised learning manner, where high framerate global shutter (GS) images should be collected as ground-truth supervision. In this paper, we propose a Self-supervised learning framework for Dual reversed RS distortions Correction (SelfDRSC), where a DRSC network can be learned to generate a high framerate GS video only based on dual RS images with reversed distortions. In particular, a bidirectional distortion warping module is proposed for reconstructing dual reversed RS images, and then a self-supervised loss can be deployed to train DRSC network by enhancing the cycle consistency between input and reconstructed dual reversed RS images. Besides start and end RS scanning time, GS images at arbitrary intermediate scanning time can also be supervised in SelfDRSC, thus enabling the learned DRSC network to generate a high framerate GS video. Moreover, a simple yet effective self-distillation strategy is introduced in self-supervised loss for mitigating boundary artifacts in generated GS images. On synthetic dataset, SelfDRSC achieves better or comparable quantitative metrics in comparison to state-of-the-art methods trained in the full supervision manner. On real-world RS cases, our SelfDRSC can produce high framerate GS videos with finer correction textures and better temporary consistency. The source code and trained models are made publicly available at https://github.com/shangwei5/SelfDRSC. We also provide an implementation in HUAWEI Mindspore at https://github.com/Hunter-Will/SelfDRSC-mindspore.<br />Comment: Accepted by ICCV 2023, available at https://github.com/shangwei5/SelfDRSC

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2305.19862
Document Type :
Working Paper