Back to Search Start Over

Forecasting Electric Vehicle Charging Station Occupancy: Smarter Mobility Data Challenge

Authors :
Amara-Ouali, Yvenn
Goude, Yannig
Doumèche, Nathan
Veyret, Pascal
Thomas, Alexis
Hebenstreit, Daniel
Wedenig, Thomas
Satouf, Arthur
Jan, Aymeric
Deleuze, Yannick
Berhaut, Paul
Treguer, Sébastien
Phe-Neau, Tiphaine
Publication Year :
2023

Abstract

The transport sector is a major contributor to greenhouse gas emissions in Europe. Shifting to electric vehicles (EVs) powered by a low-carbon energy mix would reduce carbon emissions. However, to support the development of electric mobility, a better understanding of EV charging behaviours and more accurate forecasting models are needed. To fill that gap, the Smarter Mobility Data Challenge has focused on the development of forecasting models to predict EV charging station occupancy. This challenge involved analysing a dataset of 91 charging stations across four geographical areas over seven months in 2020-2021. The forecasts were evaluated at three levels of aggregation (individual stations, areas and global) to capture the inherent hierarchical structure of the data. The results highlight the potential of hierarchical forecasting approaches to accurately predict EV charging station occupancy, providing valuable insights for energy providers and EV users alike. This open dataset addresses many real-world challenges associated with time series, such as missing values, non-stationarity and spatio-temporal correlations. Access to the dataset, code and benchmarks are available at https://gitlab.com/smarter-mobility-data-challenge/tutorials to foster future research.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2306.06142
Document Type :
Working Paper