Back to Search Start Over

Momentum matching and band-alignment type in van der Waals heterostructures: Interfacial effects and materials screening

Authors :
Zhang, Yue-Jiao
Ren, Yin-Ti
Lv, Xiao-Huan
Zhao, Xiao-Lin
Yang, Rui
Wang, Nie-Wei
Jin, Chen-Dong
Zhang, Hu
Lian, Ru-Qian
Gong, Peng-Lai
Wang, Rui-Ning
Wang, Jiang-Long
Shi, Xing-Qiang
Source :
Phys. Rev. B 2023
Publication Year :
2023

Abstract

Momentum-matched type II van der Waals heterostructures (vdWHs) have been designed by assembling layered two-dimensional semiconductors (2DSs) with special band-structure combinations - that is, the valence band edge at the Gamma point (the Brillouin-zone center) for one 2DS and the conduction band edge at the Gamma point for the other [Ubrig et al., Nat. Mater. 19, 299 (2020)]. However, the band offset sizes, band-alignment types, and whether momentum matched or not, all are affected by the interfacial effects between the component 2DSs, such as the quasichemical-bonding (QB) interaction between layers and the electrical dipole moment formed around the vdW interface. Here, based on density-functional theory calculations, first we probe the interfacial effects (including different QBs for valence and conduction bands, interface dipole, and, the synergistic effects of these two aspects) on band-edge evolution in energy and valley (location in the Brillouin zone) and the resulting changes in band alignment and momentum matching for a typical vdWH of monolayer InSe and bilayer WS2, in which the band edges of subsystems satisfy the special band-structure combination for a momentum-matched type II vdWH. Then, based on the conclusions of the studied interfacial effects, we propose a practical screening method for robust momentum-matched type II vdWHs. This practical screening method can also be applied to other band alignment types. Our current study opens a way for practical screening and designing of vdWHs with robust momentum-matching and band alignment type.

Details

Database :
arXiv
Journal :
Phys. Rev. B 2023
Publication Type :
Report
Accession number :
edsarx.2306.12821
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevB.107.235420