Back to Search Start Over

On wave interference in planet migration: dead zone torques modified by active zone forcing

Authors :
Chametla, R. O.
Chrenko, O.
Lyra, W.
Turner, N. J.
Publication Year :
2023

Abstract

We investigate planetary migration in the dead zone of a protoplanetary disk where there are a set of spiral waves propagating inward due to the turbulence in the active zone and the Rossby wave instability (RWI), which occurs at the transition between the dead and active zones. We perform global 3D unstratified magnetohydrodynamical (MHD) simulations of a gaseous disk with the FARGO3D code, using weak gradients in the static resistivity profiles that trigger the formation of a vortex at the outer edge of the dead zone. We find that once the Rossby vortex develops, spiral waves in the dead zone emerge and interact with embedded migrating planets by wave interference, which notably changes their migration. The inward migration becomes faster depending on the mass of the planet, due mostly to the constructive (destructive) interference between the outer (inner) spiral arm of the planet and, the destruction of the dynamics of the horseshoe region by means of the set of background spiral waves propagating inward. The constructive wave interference produces a more negative Lindblad differential torque which inevitably leads to an inward migration. Lastly, for massive planets embedded in the dead zone, we find that the spiral waves can create an asymmetric wider and depeer gap than in the case of $\alpha$-disks, and can prevent the formation of vortices at the outer edge of the gap. The latter could generate a faster or slower migration compared to the standard type-II migration.<br />Comment: 18 pages, 14 figures, accepted for publication in ApJ

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2306.16843
Document Type :
Working Paper
Full Text :
https://doi.org/10.3847/1538-4357/acd1ee