Back to Search
Start Over
On Tate Milnor-Witt Motives
- Publication Year :
- 2023
-
Abstract
- Over Euclidean fields, we prove that extensions and direct summands of MW-motives $\mathbb{Z}(i)[2i]$ are direct sums of $\mathbb{Z}(i)[2i]$, $\mathbb{Z}/2^r\eta(i)[2i]$ and $\mathbb{Z}/\textbf{l}[i]$, where $l$ is odd and $\textbf{l}=\sum_{i=0}^{l-1}\epsilon^i$.<br />Comment: 21 pages, comments welcome
- Subjects :
- Mathematics - Algebraic Geometry
Mathematics - K-Theory and Homology
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2307.03424
- Document Type :
- Working Paper