Back to Search Start Over

Flexible and efficient spatial extremes emulation via variational autoencoders

Authors :
Zhang, Likun
Ma, Xiaoyu
Wikle, Christopher K.
Huser, Raphaël
Publication Year :
2023

Abstract

Many real-world processes have complex tail dependence structures that cannot be characterized using classical Gaussian processes. More flexible spatial extremes models exhibit appealing extremal dependence properties but are often exceedingly prohibitive to fit and simulate from in high dimensions. In this paper, we aim to push the boundaries on computation and modeling of high-dimensional spatial extremes via integrating a new spatial extremes model that has flexible and non-stationary dependence properties in the encoding-decoding structure of a variational autoencoder called the XVAE. The XVAE can emulate spatial observations and produce outputs that have the same statistical properties as the inputs, especially in the tail. Our approach also provides a novel way of making fast inference with complex extreme-value processes. Through extensive simulation studies, we show that our XVAE is substantially more time-efficient than traditional Bayesian inference while outperforming many spatial extremes models with a stationary dependence structure. Lastly, we analyze a high-resolution satellite-derived dataset of sea surface temperature in the Red Sea, which includes 30 years of daily measurements at 16703 grid cells. We demonstrate how to use XVAE to identify regions susceptible to marine heatwaves under climate change and examine the spatial and temporal variability of the extremal dependence structure.<br />Comment: 30 pages, 8 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2307.08079
Document Type :
Working Paper