Back to Search Start Over

INFINITY: Neural Field Modeling for Reynolds-Averaged Navier-Stokes Equations

Authors :
Serrano, Louis
Migus, Leon
Yin, Yuan
Mazari, Jocelyn Ahmed
Gallinari, Patrick
Source :
ICML 2023 Workshop on Synergy of Scientific and Machine Learning Modeling
Publication Year :
2023

Abstract

For numerical design, the development of efficient and accurate surrogate models is paramount. They allow us to approximate complex physical phenomena, thereby reducing the computational burden of direct numerical simulations. We propose INFINITY, a deep learning model that utilizes implicit neural representations (INRs) to address this challenge. Our framework encodes geometric information and physical fields into compact representations and learns a mapping between them to infer the physical fields. We use an airfoil design optimization problem as an example task and we evaluate our approach on the challenging AirfRANS dataset, which closely resembles real-world industrial use-cases. The experimental results demonstrate that our framework achieves state-of-the-art performance by accurately inferring physical fields throughout the volume and surface. Additionally we demonstrate its applicability in contexts such as design exploration and shape optimization: our model can correctly predict drag and lift coefficients while adhering to the equations.<br />Comment: ICML 2023 Workshop on Synergy of Scientific and Machine Learning Modeling

Details

Database :
arXiv
Journal :
ICML 2023 Workshop on Synergy of Scientific and Machine Learning Modeling
Publication Type :
Report
Accession number :
edsarx.2307.13538
Document Type :
Working Paper