Back to Search
Start Over
Lifting generic points
- Source :
- Ergod. Th. Dynam. Sys. 44 (2024) 2565-2580
- Publication Year :
- 2023
-
Abstract
- Let $(X,T)$ and $(Y,S)$ be two topological dynamical systems, where $(X,T)$ has the weak specification property. Let $\xi$ be an invariant measure on the product system $(X\times Y, T\times S)$ with marginals $\mu$ on $X$ and $\nu$ on $Y$, with $\mu$ ergodic. Let $y\in Y$ be quasi-generic for $\nu$. Then there exists a point $x\in X$ generic for $\mu$ such that the pair $(x,y)$ is quasi-generic for $\xi$. This is a generalization of a similar theorem by T.\ Kamae, in which $(X,T)$ and $(Y,S)$ are full shifts on finite alphabets.<br />Comment: 15 pages
- Subjects :
- Mathematics - Dynamical Systems
37B05
Subjects
Details
- Database :
- arXiv
- Journal :
- Ergod. Th. Dynam. Sys. 44 (2024) 2565-2580
- Publication Type :
- Report
- Accession number :
- edsarx.2308.04540
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1017/etds.2023.119