Back to Search
Start Over
Microstructural and material property changes in severely deformed Eurofer-97
- Publication Year :
- 2023
-
Abstract
- Severe plastic deformation changes the microstructure and properties of steels, which may be favourable for their use in structural components of nuclear reactors. In this study, high-pressure torsion (HPT) was used to refine the grain structure of Eurofer-97, a ferritic/ martensitic steel. Electron microscopy and X-ray diffraction were used to characterise the microstructural changes. Following HPT, the average grain size reduced by a factor of $\sim$ 30, with a marked increase in high-angle grain boundaries. Dislocation density also increased by more than one order of magnitude. The thermal stability of the deformed material was investigated via in-situ annealing during synchrotron X-ray diffraction. This revealed substantial recovery between 450 K - 800 K. Irradiation with 20 MeV Fe-ions to $\sim$ 0.1 dpa caused a 20% reduction in dislocation density compared to the as-deformed material. However, HPT deformation prior to irradiation did not have a significant effect in mitigating the irradiation-induced reductions in thermal diffusivity and surface acoustic wave velocity of the material. These results provide a multi-faceted understanding of the changes in ferritic/martensitic steels due to severe plastic deformation, and how these changes can be used to alter material properties.<br />Comment: 59 pages, 19 figures
- Subjects :
- Condensed Matter - Materials Science
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2308.07735
- Document Type :
- Working Paper