Back to Search
Start Over
Bias-Aware Minimisation: Understanding and Mitigating Estimator Bias in Private SGD
- Publication Year :
- 2023
-
Abstract
- Differentially private SGD (DP-SGD) holds the promise of enabling the safe and responsible application of machine learning to sensitive datasets. However, DP-SGD only provides a biased, noisy estimate of a mini-batch gradient. This renders optimisation steps less effective and limits model utility as a result. With this work, we show a connection between per-sample gradient norms and the estimation bias of the private gradient oracle used in DP-SGD. Here, we propose Bias-Aware Minimisation (BAM) that allows for the provable reduction of private gradient estimator bias. We show how to efficiently compute quantities needed for BAM to scale to large neural networks and highlight similarities to closely related methods such as Sharpness-Aware Minimisation. Finally, we provide empirical evidence that BAM not only reduces bias but also substantially improves privacy-utility trade-offs on the CIFAR-10, CIFAR-100, and ImageNet-32 datasets.<br />Comment: Accepted to the 2023 Theory and Practice of Differential Privacy (TPDP) Workshop
- Subjects :
- Computer Science - Machine Learning
Computer Science - Cryptography and Security
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2308.12018
- Document Type :
- Working Paper