Back to Search Start Over

FAST discovery of a fast neutral hydrogen outflow

Authors :
Su, Renzhi
Gu, Minfeng
Curran, S. J.
Mahony, Elizabeth K.
Tang, Ningyu
Allison, James R.
Li, Di
Zhu, Ming
Aditya, J. N. H. S.
Yoon, Hyein
Zheng, Zheng
Wu, Zhongzu
Publication Year :
2023

Abstract

In this letter, we report the discovery of a fast neutral hydrogen outflow in SDSS J145239.38+062738.0, a merging radio galaxy containing an optical type I active galactic nuclei (AGN). This discovery was made through observations conducted by the Five-hundred-meter Aperture Spherical radio Telescope (FAST) using redshifted 21-cm absorption. The outflow exhibits a blueshifted velocity likely up to $\sim-1000\,\rm km\,s^{-1}$ with respect to the systemic velocity of the host galaxy with an absorption strength of $\sim -0.6\,\rm mJy\,beam^{-1}$ corresponding to an optical depth of 0.002 at $v=-500\,\rm km\,s^{-1}$. The mass outflow rate ranges between $2.8\times10^{-2}$ and $3.6\, \rm M_\odot \, yr^{-1}$, implying an energy outflow rate ranging between $4.2\times10^{39}$ and $9.7\times10^{40}\rm\,erg\,s^{-1}$, assuming 100 K $<T_{\rm s}<$ 1000 K. Plausible drivers of the outflow include the star bursts, the AGN radiation, and the radio jet, the last of which is considered the most likely culprit according to the kinematics. By analysing the properties of the outflow, the AGN, and the jet, we find that if the HI outflow is driven by the AGN radiation, the AGN radiation seems not powerful enough to provide negative feedback whereas the radio jet shows the potential to provide negative feedback. Our observations contribute another example of a fast outflow detected in neutral hydrogen, as well as demonstrate the capability of FAST in detecting such outflows.<br />Comment: Accepted by ApJL

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2309.01890
Document Type :
Working Paper