Back to Search Start Over

Dwarf galaxies with the highest concentration are not thicker than ordinary dwarf galaxies

Authors :
Chen, Lijun
Zhang, Hong-Xin
Lin, Zesen
Chen, Guangwen
Tao, Bojun
Liang, Zhixiong
Lin, Zheyu
Kong, Xu
Publication Year :
2023

Abstract

The formation mechanism of high-concentration dwarf galaxies is still a mystery. We perform a comparative study of the intrinsic shape of nearby low-mass galaxies with different stellar concentration. The intrinsic shape is parameterized by the intermediate-to-major axis ratios B/A and the minor-to-major axis ratios C/A of triaxial ellipsoidal models. Our galaxies ($10^{7.5} M_\odot$ < $M_\star$ < $10^{10.0} M_\odot$) are selected to have spectroscopic redshift from SDSS or GAMA, and have broadband optical images from the HSC-SSP Wide layer survey. The deep HSC-SSP images allow to measure the apparent axis ratios $q$ at galactic radii beyond the central star-forming area of our galaxies. We infer the intrinsic axis ratios based on the $q$ distributions. We find that 1) our galaxies have typical intrinsic shape similarly close to be oblate ($\mu_{B/A}$ $\sim$ 0.9--1), regardless of the concentration, stellar mass, star formation activity, and local environment (being central or satellite); 2) galaxies with the highest concentration tend to have intrinsic thickness similar to or (in virtually all cases) slightly thinner (i.e. smaller mean $\mu_{C/A}$ or equivalently lower triaxiality) than ordinary galaxies, regardless of other properties explored here. This appears to be in contrast with the expectation of the classic merger scenario for high-concentration galaxies. Given the lack of a complete understanding of dwarf-dwarf merger, we cannot draw a definite conclusion about the relevance of mergers in the formation of high-concentration dwarfs. Other mechanisms such as halo spin may also play important roles in the formation of high-concentration dwarf galaxies.<br />Comment: 12 pages, 8 figures, 2 tables, accepted for publication in ApJ

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2309.05052
Document Type :
Working Paper