Back to Search Start Over

Intrinsic H\'older spaces for fractional kinetic operators

Authors :
Manfredini, Maria
Pagliarani, Stefano
Polidoro, Sergio
Publication Year :
2023

Abstract

We introduce anisotropic H\"older spaces useful for the study of the regularity theory for non local kinetic operators $\mathcal{L}$ whose prototypal example is \begin{equation} \mathcal{L} u (t,x,v) = \int_{\mathbb{R}^d} \frac{C_{d,s}}{|v - v'|^{d+2s}} (u(t,x,v') - u(t,x,v)) d v' + \langle v , \nabla_x \rangle + \partial_t, \quad (t,x,v)\in\mathbb{R}\times\mathbb{R}^{2d}. \end{equation} The H\"older spaces are defined in terms of an anisotropic distance relevant to the Galilean geometric structure on $\mathbb{R}\times\mathbb{R}^{2d}$ the operator $\mathcal{L}$ is invariant with respect to. We prove an intrinsic Taylor-like formula, whose reminder is estimated in terms of the anisotropic distance of the Galilean structure. Our achievements naturally extend analogous known results for purely differential operators on Lie groups.

Subjects

Subjects :
Mathematics - Analysis of PDEs

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2309.16350
Document Type :
Working Paper